

    
      
          
            
  
Quarry: a Minecraft protocol library

[image: Latest version released on PyPi] [https://pypi.python.org/pypi/quarry] [image: Documentation] [http://quarry.readthedocs.io/en/latest] [image: Travis CI current build results] [https://travis-ci.org/barneygale/quarry]

Quarry is a Python library that implements the Minecraft protocol [http://wiki.vg/Protocol]. It allows
you to write special purpose clients, servers and proxies.


Installation

Use pip to install quarry:

$ pip install quarry








Features


	Supports Minecraft versions 1.7 through 1.15.2


	Supports Python 2.7 and 3.5+


	Built upon twisted and cryptography


	Exposes base classes and hooks for implementing your own client, server or
proxy


	Implements many Minecraft data types, such as NBT, Anvil, chunk sections,
command graphs and entity metadata


	Implements the design of the protocol - packet headers, modes, compression,
encryption, login/session, etc.


	Implements all packets in “init”, “status” and “login” modes


	Does not implement most packets in “play” mode - it is left up to you to
hook and implement the packets you’re interested in







Documentation



	Networking
	Writing a Client

	Writing a Server

	Writing a Proxy

	Factories and Protocols

	Packet Names





	Data Types
	Buffers

	Registry

	Chat Messages

	Blocks and Chunks

	NBT

	UUIDs





	Examples
	Clients

	Servers

	Proxies





	Changelog
	master

	v1.5.1

	v1.5

	v1.4

	v1.3

	v1.2

	v1.1.1

	v1.1

	v1.0

	v0.9.1

	v0.9

	v0.8

	v0.7

	v0.6.3

	v0.6.2

	v0.6.1

	v0.6

	v0.5

	v0.4

	v0.3.1

	v0.3

	v0.2.3

	v0.2.2

	v0.2.1

	v0.2

	v0.1












Indices and tables


	Index


	Module Index


	Search Page










          

      

      

    

  

    
      
          
            
  
Networking



	Writing a Client
	Skeleton Client

	Offline Profiles

	Online Profiles





	Writing a Server
	Skeleton Server





	Writing a Proxy
	Skeleton Proxy

	Downstream Factories

	Bridges





	Factories and Protocols
	Factories

	Protocols
	Connection

	Authentication

	Packets

	Ticking









	Packet Names
	Minecraft 1.15.2













          

      

      

    

  

    
      
          
            
  
Writing a Client

A client is generally made up of three parts:


	A Profile or
OfflineProfile object, representing the Minecraft
account to use.


	A subclass of ClientFactory. Client factories don’t do a lot;
simply pass a profile to its initializer and then call
connect(). You may also want to subclass from twisted’s
ReconnectingClientFactory [http://twistedmatrix.com/documents/current/api/twisted.internet.protocol.ReconnectingClientFactory.html]


	A subclass of ClientProtocol. This represents your connection to the
server.





See also

Factories and Protocols




Skeleton Client

By default quarry proceeds through the authentication process and then switches
into the “play” protocol mode. The skeleton client below will receive world
data from the server, but as it does not send any position updates it will be
disconnected by the server after a few seconds. Please see the Examples
for less silly clients.

from twisted.internet import defer, reactor
from quarry.net.client import ClientFactory, ClientProtocol
from quarry.auth import Profile


class ExampleClientProtocol(ClientProtocol):
    pass


class ExampleClientFactory(ClientFactory):
    protocol = ExampleClientProtocol


@defer.inlineCallbacks
def main():
    print("logging in...")
    profile = yield Profile.from_credentials(
        "someone@somewhere.com", "p4ssw0rd")
    factory = ExampleClientFactory(profile)
    print("connecting...")
    factory = yield factory.connect("localhost", 25565)
    print("connected!")


if __name__ == "__main__":
    main()
    reactor.run()








Offline Profiles

Use an OfflineProfile if you only need to log into offline-mode
servers:

from quarry.net.auth import OfflineProfile
profile = OfflineProfile("Notch")






	
class quarry.net.auth.OfflineProfile

	
	
__init__(display_name='quarry')

	




	
classmethod from_display_name(display_name)

	For compatibility with the from_ methods on Profile, this
method returns a Deferred that immediately fires with a constructed
OfflineProfile object.












Online Profiles

Quarry also provides a number of methods for logging in to the Mojang session
servers. Each of these returns a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with a
Profile object when login succeeds. Defining a callback and then
calling Profile.from_credentials(...).addCallback(myfunc) is one approach,
but it’s usually cleaner to use inlineCallbacks [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.inlineCallbacks.html], as in the first example.


	
class quarry.net.auth.Profile(client_token, access_token, display_name, uuid)

	
	
to_file(profiles_path=None)

	




	
classmethod from_credentials(email, password)

	




	
classmethod from_token(client_token, access_token, display_name, uuid)

	




	
classmethod from_file(display_name=None, uuid=None, profiles_path=None)

	













          

      

      

    

  

    
      
          
            
  
Writing a Server

A server is generally made up of two parts:


	A subclass of ServerFactory. Under normal circumstances only one
ServerFactory is instantiated. This object represents your game server
as a whole.


	A subclass of ServerProtocol. Each object represents a connection
with a client.





See also

Factories and Protocols




Skeleton Server

By default quarry takes clients through the authentication process and then
switches into the “play” protocol mode. Normally at this point you would
implement player_joined() to either
disconnect the client or start the process of spawning the player. In the
skeleton server below we don’t do either, which leaves the client on the
“Logging in…” screen. Please see the Examples for less pointless
servers.

from twisted.internet import reactor
from quarry.net.server import ServerFactory, ServerProtocol

class ExampleServerProtocol(ServerProtocol):
    pass

class ExampleServerFactory(ClientFactory):
    protocol = ExampleServerProtocol


factory = ExampleServerFactory()
factory.listen('127.0.0.1', 25565)
reactor.run()











          

      

      

    

  

    
      
          
            
  
Writing a Proxy

A quarry proxy has five main parts:








	Class

	Superclass

	Description



	DownstreamFactory

	ServerFactory

	Spawns Downstream objects for connecting clients



	Downstream

	ServerProtocol

	Connection with an external client



	Bridge

	PacketDispatcher

	Forwards packets between the up/downstream



	UpstreamFactory

	ClientFactory

	Spawns an Upstream



	Upstream

	ClientProtocol

	Connection with an external server






In ASCII art:

+--------+       +--------------------------------+       +--------+
| mojang | ----> |              QUARRY            | ----> | mojang |
| client | <---- | downstream | bridge | upstream | <---- | server |
+--------+       +--------------------------------+       +--------+





Typically the Bridge and DownstreamFactory are
customized.

When the user connects, the DownstreamFactory creates a
Downstream object to communicate with the external client. If we’re running
in online-mode, we go through server-side auth with mojang.

Once the user is authed, we spawn a UpstreamFactory, which makes a
connection to the external server and spawns an Upstream to handle it.
If requested we go through client-side auth.

At this point both endpoints of the proxy are authenticated and switched to
“play” mode. The Bridge assumes responsibility for passing packets
between the endpoints. Proxy business logic is typically implemented by
defining packet handlers in a Bridge subclass, much like in client and
server protocols. Unlike clients and servers, the
method name must include the packet direction before its name, e.g.:

# Hook server-to-client keep alive
def packet_upstream_tab_complete(self, buff):
    # Unpack the packet
    p_text = buff.unpack_string()

    # Do a custom thing
    if p_text.startswith("/msg"):
        return # Drop the packet

    # Forward the packet
    buff.restore()
    self.upstream.send_packet("tab_complete", buff.read())





If a packet is hooked but not explicitly forwarded it is effectively dropped.
Unhooked packets are handled by Bridge.packet_unhandled(), which
forwards packets by default.


Skeleton Proxy

The proxy below will do online-mode authentication with a client connecting on
port 25565, then connect in offline mode to a server running on port 25566
and begin exchanging packets via the bridge.

from twisted.internet import reactor
from quarry.net.proxy import DownstreamFactory, Bridge


class ExampleBridge(Bridge):
    pass


def main(argv):
    factory = DownstreamFactory()
    factory.bridge_class = ExampleBridge
    factory.connect_host = "127.0.0.1"
    factory.connect_port = 25566
    factory.listen("127.0.0.1", 25565)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Downstream Factories


	
class quarry.net.proxy.DownstreamFactory

	Subclass of quarry.net.server.ServerFactory. Additional
attributes:


	
bridge_class = <class 'quarry.net.proxy.Bridge'>

	




	
connect_host = None

	




	
connect_port = None

	










Bridges


	
class quarry.net.proxy.Bridge(downstream_factory, downstream)

	This class exchanges packets between the upstream and downstream.


	
upstream_factory_class = <class 'quarry.net.proxy.UpstreamFactory'>

	




	
log_level = 20

	




	
logger = None

	




	
downstream_factory = None

	




	
downstream = None

	




	
upstream_profile = None

	




	
upstream_factory = None

	




	
upstream = None

	




	
make_profile()

	Returns the profile to use for the upstream connection. By default, use
an offline profile with the same display name as the remote client.






	
connect()

	Connect to the remote server.






	
downstream_ready()

	Called when the downstream is waiting for forwarding to begin.
By default, this method begins a connection to the remote server.






	
upstream_ready()

	Called when the upstream is waiting for forwarding to begin. By
default, enables forwarding.






	
downstream_disconnected()

	Called when the connection to the remote client is closed.






	
upstream_disconnected()

	Called when the connection to the remote server is closed.






	
enable_forwarding()

	Enables forwarding. Packet handlers in the Upstream and
Downstream cease to be called, and all packets are routed via the
Bridge. This method is called by upstream_ready() by default.






	
enable_fast_forwarding()

	Enables fast forwarding. Quarry passes network data between endpoints
without decoding packets, and therefore all packet handlers cease to be
called. Both parts of the proxy must be operating at the same
compression threshold. This method is not called by default.






	
packet_received(buff, direction, name)

	Called when a packet is received a remote. Usually this method
dispatches the packet to a method named
packet_<direction>_<packet name>, or calls packet_unhandled()
if no such methods exists. You might want to override this to implement
your own dispatch logic or logging.






	
packet_unhandled(buff, direction, name)

	Called when a packet is received that is not hooked. The default
implementation forwards the packet.















          

      

      

    

  

    
      
          
            
  
Factories and Protocols


Factories

Factories represent your minecraft server or client as a whole. Normally
only one factory is created.

Client factories require a Profile object to be
supplied to the initializer. Use the ClientFactory.connect() method to
connect. If force_protocol_version is not defined, this method will make
two connections to the server; the first is used to establish the server’s
protocol version.


	
class quarry.net.client.ClientFactory(profile=None)

	
	
protocol

	alias of ClientProtocol






	
__init__(profile=None)

	




	
connect(host, port=25565)

	




	
force_protocol_version = None

	




	
get_buff_type(protocol_version)

	Gets a buffer type for the given protocol version.









Server factories are used to customize server-wide behaviour. Use
listen() to listen for connections. A set of all
associated ServerProtocol objects is available as
players().


	
class quarry.net.server.ServerFactory

	
	
protocol

	alias of ServerProtocol






	
motd = 'A Minecraft Server'

	




	
max_players = 20

	




	
icon_path = None

	




	
online_mode = True

	




	
prevent_proxy_connections = True

	




	
compression_threshold = 256

	




	
auth_timeout = 30

	




	
__init__()

	




	
players = None

	




	
listen(host, port=25565)

	




	
force_protocol_version = None

	




	
get_buff_type(protocol_version)

	Gets a buffer type for the given protocol version.












Protocols

Protocols represent a connection to a remote minecraft server or client. For
most common usages, clients have only one protocol active at any given time. In
protocols you can define packet handlers or override methods in order to
respond to events.


	
class quarry.net.protocol.Protocol

	Minecraft protocol implementation common to both clients and servers. You
should not subclass from this class, but rather subclass from one of the
three classes below.

The methods/attributes given below relate specifically to quarry; the rest
are given in the Connection, Authentication and Packets sections
further on.


	
factory = None

	A reference to the factory






	
logger = None

	The logger for this protocol.






	
ticker = None

	A reference to a Ticker instance.










	
class quarry.net.server.ServerProtocol(factory, remote_addr)

	This class represents a connection with a client






	
class quarry.net.client.ClientProtocol(factory, remote_addr)

	This class represents a connection to a server






	
class quarry.net.client.SpawningClientProtocol(factory, remote_addr)

	




Connection

Override the connection_made(),
connection_lost() and connection_timed_out()
methods to handle connection events. The remote’s IP address is available as
the remote_addr attribute.

In servers, connect_host stores the
hostname the client reported that it connected to; this can be used to
implement virtual hosting.


	
Protocol.connection_made()

	Called when the connection is established






	
Protocol.connection_lost(reason=None)

	Called when the connection is lost






	
Protocol.connection_timed_out()

	Called when the connection has been idle too long






	
Protocol.remote_addr = None

	The IP address of the remote.






	
ServerProtocol.connect_host = None

	




	
ServerProtocol.connect_port = None

	




	
Protocol.close(reason=None)

	Closes the connection






	
Protocol.closed = False

	






Authentication

Override the auth_ok() and auth_failed()
methods to handle an authentication outcome. In servers, the player’s display
name can be obtained as display_name,
with display_name_confirmed being set
to True when authentication is successful. In clients, the in-use profile
is available as self.factory.profile.

Override the player_joined() and player_left()
methods to respond to a player entering “play” mode (via the authentication
process) or quitting the game from “play” mode. You can check the player’s
current status via in_game


	
Protocol.auth_ok(data)

	Called when auth with mojang succeeded (online mode only)






	
Protocol.auth_failed(err)

	Called when auth with mojang failed (online mode only)






	
ServerProtocol.display_name = None

	




	
ServerProtocol.display_name_confirmed = False

	




	
Protocol.player_joined()

	Called when the player joins the game






	
Protocol.player_left()

	Called when the player leaves the game






	
Protocol.in_game = False

	






Packets

Call send_packet() to send a packet:

# Add a diamond sword to the first hotbar slot
window_id = 0
slot_id = 36
item_id = 276

self.send_packet("set_slot",
    self.buff_type.pack('bh', window_id, slot_id) +
    self.buff_type.pack_slot(item_id))





To construct the payload, call static methods on
Buffer. A reference to this class is available as
self.buff_type.

To receive a packet, implement a method in your subclass of
ClientProtocol or
ServerProtocol with a name like
packet_<packet name>:

def packet_update_health(self, buff):
    health = buff.unpack('f')
    food = buff.unpack_varint()
    saturation = buff.unpack('f')






See also

Packet Names.



You are passed a Buffer instance, which contains
the payload of the packet. If you hook a packet, you should ensure you read the
entire payload.

Packet dispatching can be customized. If you override
packet_unhandled() you can handle any packets without a
matching packet_<packet name> handler. If you override
packet_received(), you can replace the entire
packet_<packet name> dispatching.


	
Protocol.send_packet(name, *data)

	Sends a packet to the remote.






	
Protocol.buff_type = None

	Usually a reference to a Buffer class.
This is useful when constructing a packet payload for use in
send_packet()






	
Protocol.packet_received(buff, name)

	Called when a packet is received from the remote. Usually this method
dispatches the packet to a method named packet_<packet name>, or
calls packet_unhandled() if no such methods exists. You might
want to override this to implement your own dispatch logic or logging.






	
Protocol.packet_unhandled(buff, name)

	Called when a packet is received that is not hooked. The default
implementation silently discards the packet.






	
Protocol.log_packet(prefix, name)

	Logs a packet at debug level






	
Protocol.get_packet_name(ident)

	




	
Protocol.get_packet_ident(name)

	






Ticking

To register delayed or repeating callbacks, call methods on the
Ticker object available as self.ticker.


	
class quarry.net.ticker.Ticker(logger)

	
	
tick = 0

	The current tick






	
interval = 0.05

	Interval between ticks, in seconds






	
max_lag = 40

	Maximum number of delayed ticks before they’re all skipped






	
start()

	Start running the tick loop.






	
stop()

	Stop running the tick loop.






	
add_loop(interval, callback)

	Repeatedly run a callback.


	Parameters

	
	interval – The interval in ticks


	callback – The callback to run






	Returns

	An instance providing a stop() method










	
add_delay(delay, callback)

	Run a callback after a delay.


	Parameters

	
	delay – The delay in ticks


	callback – The callback to run






	Returns

	An instance providing stop() and restart() methods










	
remove(task)

	Removes a task, effectively cancelling it.


	Parameters

	task – The task to remove










	
remove_all()

	Removes all registered tasks, effectively cancelling them.

















          

      

      

    

  

    
      
          
            
  
Packet Names

See the Minecraft Coalition Wiki [http://wiki.vg/Protocol] for a details on every packet.


Minecraft 1.15.2


	acknowledge_player_digging (downstream)


	advancement_tab (upstream)


	advancements (downstream)


	animation (downstream, upstream)


	attach_entity (downstream)


	block_action (downstream)


	block_break_animation (downstream)


	block_change (downstream)


	block_metadata_request (upstream)


	block_metadata_response (downstream)


	boss_bar (downstream)


	camera (downstream)


	change_game_state (downstream)


	chat_message (downstream, upstream)


	chunk_data (downstream)


	click_window (upstream)


	client_settings (upstream)


	client_status (upstream)


	close_window (downstream, upstream)


	collect_item (downstream)


	combat_event (downstream)


	confirm_transaction (downstream, upstream)


	craft_recipe_request (upstream)


	craft_recipe_response (downstream)


	crafting_book_data (upstream)


	creative_inventory_action (upstream)


	declare_commands (downstream)


	declare_recipes (downstream)


	destroy_entities (downstream)


	disconnect (downstream)


	display_scoreboard (downstream)


	edit_book (upstream)


	effect (downstream)


	enchant_item (upstream)


	entity (downstream)


	entity_action (upstream)


	entity_effect (downstream)


	entity_equipment (downstream)


	entity_head_look (downstream)


	entity_look (downstream)


	entity_look_and_relative_move (downstream)


	entity_metadata (downstream)


	entity_metadata_request (upstream)


	entity_properties (downstream)


	entity_relative_move (downstream)


	entity_sound_effect (downstream)


	entity_status (downstream)


	entity_teleport (downstream)


	entity_velocity (downstream)


	explosion (downstream)


	face_player (downstream)


	handshake (upstream)


	held_item_change (downstream, upstream)


	join_game (downstream)


	keep_alive (downstream, upstream)


	lock_difficulty (upstream)


	login_disconnect (downstream)


	login_encryption_request (downstream)


	login_encryption_response (upstream)


	login_plugin_request (downstream)


	login_plugin_response (upstream)


	login_set_compression (downstream)


	login_start (upstream)


	login_success (downstream)


	map (downstream)


	multi_block_change (downstream)


	name_item (upstream)


	named_sound_effect (downstream)


	open_book (downstream)


	open_horse_window (downstream)


	open_sign_editor (downstream)


	open_window (downstream)


	particle (downstream)


	pick_item (upstream)


	player (upstream)


	player_abilities (downstream, upstream)


	player_block_placement (upstream)


	player_digging (upstream)


	player_list_header_footer (downstream)


	player_list_item (downstream)


	player_look (upstream)


	player_position (upstream)


	player_position_and_look (downstream, upstream)


	plugin_message (downstream, upstream)


	remove_entity_effect (downstream)


	resource_pack_send (downstream)


	resource_pack_status (upstream)


	respawn (downstream)


	scoreboard_objective (downstream)


	select_advancement_tab (downstream)


	select_trade (upstream)


	server_difficulty (downstream)


	set_beacon_effect (upstream)


	set_cooldown (downstream)


	set_difficulty (upstream)


	set_experience (downstream)


	set_passengers (downstream)


	set_slot (downstream)


	sound_effect (downstream)


	spawn_experience_orb (downstream)


	spawn_global_entity (downstream)


	spawn_mob (downstream)


	spawn_object (downstream)


	spawn_painting (downstream)


	spawn_player (downstream)


	spawn_position (downstream)


	spectate (upstream)


	statistics (downstream)


	status_ping (upstream)


	status_pong (downstream)


	status_request (upstream)


	status_response (downstream)


	steer_boat (upstream)


	steer_vehicle (upstream)


	stop_sound (downstream)


	tab_complete (downstream, upstream)


	tags (downstream)


	teams (downstream)


	teleport_confirm (upstream)


	time_update (downstream)


	title (downstream)


	trade_list (downstream)


	unload_chunk (downstream)


	unlock_recipes (downstream)


	update_block_entity (downstream)


	update_command_block (upstream)


	update_command_block_minecart (upstream)


	update_health (downstream)


	update_jigsaw_block (upstream)


	update_light (downstream)


	update_score (downstream)


	update_sign (upstream)


	update_structure_block (upstream)


	update_view_distance (downstream)


	update_view_position (downstream)


	use_entity (upstream)


	use_item (upstream)


	vehicle_move (downstream, upstream)


	window_items (downstream)


	window_property (downstream)


	world_border (downstream)










          

      

      

    

  

    
      
          
            
  
Data Types



	Buffers
	Protocol Versions
	Minecraft 1.7

	Minecraft 1.9

	Minecraft 1.13

	Minecraft 1.13.2

	Minecraft 1.14









	Registry

	Chat Messages

	Blocks and Chunks
	Packets

	Regions





	NBT
	Tags

	Files

	Debugging





	UUIDs









          

      

      

    

  

    
      
          
            
  
Buffers

Quarry implements Minecraft’s data types by way of the Buffer class.

When quarry reads a packet, it stores its payload in a buffer object
and passes the buffer to a packet handler. The packet handler then unpacks
the payload, which usually made up of multiple fields of differing types. You
can read from the front of the buffer via the Buffer.read() method or any
of the unpack_*() methods listed below

Buffers also provide a number of static methods that pack data into
a byte string. These are named like pack_*().

When unpacking data you work with a buffer object, whereas when packing
data you work with a buffer type. A reference to the buffer type is available
from Protocol objects as self.buff_type.


	
class quarry.types.buffer.Buffer(data=None)

	
	
registry = <quarry.types.registry.OpaqueRegistry object>

	An object that encodes/decodes IDs, such as blocks and items.






	
add(data)

	Add some bytes to the end of the buffer.






	
discard()

	Discards the entire buffer contents.






	
classmethod pack(fmt, *fields)

	Pack fields into a struct. The format accepted is the same as for
struct.pack().






	
classmethod pack_array(fmt, array)

	Packs array into a struct. The format accepted is the same as for
struct.pack().






	
classmethod pack_block(block, packer=None)

	Packs a block.






	
classmethod pack_chat(message)

	Pack a Minecraft chat message.






	
classmethod pack_chunk_section(blocks, block_lights=None, sky_lights=None)

	Packs a chunk section. The supplied argument should be an instance of
quarry.types.chunk.BlockArray.






	
classmethod pack_command_node(node, nodes)

	Packs a command node.






	
classmethod pack_command_node_properties(parser, properties)

	Packs the properties of an argument command node.






	
classmethod pack_commands(root_node)

	Packs a command graph.






	
classmethod pack_direction(direction)

	Packs a direction.






	
classmethod pack_entity_metadata(metadata)

	Packs entity metadata.






	
classmethod pack_ingredient(ingredient)

	Packs a crafting recipe ingredient alternation.






	
classmethod pack_json(obj)

	Serialize an object to JSON and pack it to a Minecraft string.






	
classmethod pack_nbt(tag=None)

	Packs an NBT tag






	
classmethod pack_optional(packer, val)

	Packs a boolean indicating whether val is None. If not,
packer(val) is appended to the returned string.






	
classmethod pack_optional_varint(number)

	Packs an optional varint.






	
classmethod pack_packet(data, compression_threshold=-1)

	Unpacks a packet frame. This method handles length-prefixing and
compression.






	
classmethod pack_particle(kind, data=None)

	Packs a particle.






	
classmethod pack_pose(pose)

	Packs a pose.






	
classmethod pack_position(x, y, z)

	Packs a Position.






	
classmethod pack_recipe(name, type, **recipe)

	Packs a crafting recipe.






	
classmethod pack_rotation(x, y, z)

	Packs a rotation.






	
classmethod pack_slot(item=None, count=1, tag=None)

	Packs a slot.






	
classmethod pack_string(text)

	Pack a varint-prefixed utf8 string.






	
classmethod pack_uuid(uuid)

	Packs a UUID.






	
classmethod pack_varint(number, max_bits=32)

	Packs a varint.






	
classmethod pack_villager(kind, profession, level)

	Packs villager data.






	
read(length=None)

	Read length bytes from the beginning of the buffer, or all bytes if
length is None






	
restore()

	Restores the buffer contents to its state when save() was last
called.






	
save()

	Saves the buffer contents.






	
unpack(fmt)

	Unpack a struct. The format accepted is the same as for
struct.unpack().






	
unpack_array(fmt, length)

	Unpack an array struct. The format accepted is the same as for
struct.unpack().






	
unpack_block(unpacker=None)

	Unpacks a block.






	
unpack_chat()

	Unpack a Minecraft chat message.






	
unpack_chunk_section(overworld=True)

	Unpacks a chunk section. Returns a sequence of length 4096 (16x16x16).






	
unpack_command_node()

	Unpacks a command node.






	
unpack_command_node_properties(parser)

	Unpacks the properties of an argument command node.






	
unpack_commands(resolve_redirects=True)

	Unpacks a command graph.

If resolve_redirects is True (the default), the returned
structure may contain contain circular references, and therefore cannot
be serialized to JSON (or similar). If it is False, all node
redirect information is stripped, resulting in a directed acyclic
graph.






	
unpack_direction()

	Unpacks a direction.






	
unpack_entity_metadata()

	Unpacks entity metadata.






	
unpack_ingredient()

	Unpacks a crafting recipe ingredient alternation.






	
unpack_json()

	Unpack a Minecraft string and interpret it as JSON.






	
unpack_nbt()

	Unpacks NBT tag(s).






	
unpack_optional(unpacker)

	Unpacks a boolean. If it’s True, return the value of unpacker().
Otherwise return None.






	
unpack_optional_varint()

	Unpacks an optional varint.






	
unpack_packet(cls, compression_threshold=-1)

	Unpacks a packet frame. This method handles length-prefixing and
compression.






	
unpack_particle()

	Unpacks a particle. Returns an (kind, data) pair.






	
unpack_pose()

	Unpacks a pose.






	
unpack_position()

	Unpacks a position.






	
unpack_recipe()

	Unpacks a crafting recipe.






	
unpack_rotation()

	Unpacks a rotation






	
unpack_slot()

	Unpacks a slot.






	
unpack_string()

	Unpack a varint-prefixed utf8 string.






	
unpack_uuid()

	Unpacks a UUID.






	
unpack_varint(max_bits=32)

	Unpacks a varint.






	
unpack_villager()

	Unpacks villager data.










Protocol Versions

Some data types vary between Minecraft versions. Quarry automatically sets the
buff_type attribute of Protocol instance to an appropriate buffer
class when the protocol version becomes known.


Minecraft 1.7

Support for Minecraft 1.7+ is implemented in the Buffer1_7 class.




Minecraft 1.9

Support for Minecraft 1.9+ is implemented in the Buffer1_9 class.

Changes from 1.7:


	pack_chunk_section() and unpack_chunk_section() added.


	pack_entity_metadata() and unpack_entity_metadata() modified.







Minecraft 1.13

Support for Minecraft 1.13+ is implemented in the Buffer1_13 class.

Changes from 1.9:


	pack_commands() and unpack_commands() added.


	pack_particle() and unpack_particle() added.


	pack_recipes() and unpack_recipes() added.


	pack_chunk_section_palette() and unpack_chunk_section_palette()
modified.


	pack_slot() and unpack_slot() modified.


	pack_entity_metadata() and unpack_entity_metadata() modified.







Minecraft 1.13.2

Support for Minecraft 1.13.2+ is implemented in the Buffer1_13_2
class.

Changes from 1.13:


	pack_slot() and unpack_slot() modified.







Minecraft 1.14

Support for Minecraft 1.14+ is implemented in the Buffer1_14 class.

Changes from 1.13.2:


	pack_villager() and unpack_villager() added.


	pack_optional_varint() and unpack_optional_varint() added.


	pack_pose() and unpack_pose() added.


	pack_chunk_section() and unpack_chunk_section() modified.


	pack_position() and unpack_position() modified.


	pack_entity_metadata() and unpack_entity_metadata() modified.


	pack_particle() and unpack_particle() modified.


	pack_recipes() and unpack_recipes() modified.












          

      

      

    

  

    
      
          
            
  
Registry

Quarry can be told to encode/decode block, item and other information by
setting the registry attribute on the in-use buffer. This can be
set directly or by deriving a subclass and customizing
get_buff_type(). The registry
affects the following methods:


	unpack_slot() and pack_slot()


	unpack_block() and pack_block()


	unpack_entity_metadata() and
pack_entity_metadata()


	unpack_chunk_section() and
pack_chunk_section()


	unpack_villager() and pack_villager()


	unpack_particle() and pack_particle()




All registry objects have the following methods:


	
Registry.encode(kind, obj)

	Encodes a thing to an integer ID.






	
Registry.decode(kind, val)

	Decodes a thing from an integer ID.






	
Registry.encode_block(obj)

	Encodes a block to an integer ID.






	
Registry.decode_block(val)

	Decodes a block from an integer ID.






	
Registry.is_air_block(obj)

	Returns true if the given object is considered air for lighting
purposes.





Quarry supports the following registry types:


	
class quarry.types.registry.OpaqueRegistry(max_bits)

	Registry that passes IDs through unchanged. This is the default.






	
class quarry.types.registry.BitShiftRegistry(max_bits)

	Registry implementing the Minecraft 1.7 - 1.12 bit-shift format for blocks.

Blocks decode to a (block_id, metadata) pair. Items pass through
unchanged.






	
class quarry.types.registry.LookupRegistry(blocks, registries)

	Registry implementing a dictionary lookup, recommended for 1.13+.

Blocks decode to a dict where the only guaranteed key is u'name'.
Items decode to a str name.

Use the from_jar() or from_json() class methods to load data from
the official server.


	
classmethod from_jar(jar_path)

	Create a LookupRegistry from a Minecraft server jar file. This
method generates JSON files by running the Minecraft server like so:

java -cp minecraft_server.jar net.minecraft.data.Main --reports





It then feeds the generated JSON files to from_json().






	
classmethod from_json(reports_path)

	Create a LookupRegistry from JSON files generated by the official
server.













          

      

      

    

  

    
      
          
            
  
Chat Messages

Minecraft chat is implemented in the Message class.


	
class quarry.types.chat.Message(value)

	Represents a Minecraft chat message.


	
classmethod from_buff(buff)

	




	
to_bytes()

	




	
classmethod from_string(string)

	




	
to_string(strip_styles=True)

	Minecraft uses a JSON format to represent chat messages; this method
retrieves a plaintext representation, optionally including styles
encoded using old-school chat codes (U+00A7 plus one character).






	
classmethod strip_chat_styles(text)

	











          

      

      

    

  

    
      
          
            
  
Blocks and Chunks

Minecraft uses tightly-packed arrays to store data like light levels,
heightmaps and block data. Quarry can read and write these formats in both
Chunk Data [http://wiki.vg/Protocol#Chunk_Data]  packets and .mca files. Two classes are available for
working with this data:


	
class quarry.types.chunk.PackedArray(storage, sector_width, value_width, fresh)

	This class provides support for an array where values are tightly packed
into a number of bits (such as 4 bits for light or 9 bits for height).

All operations associated with fixed-size mutable sequences are supported,
such as slicing.

Internally data is stored as a bit array with contiguous values, starting
at the leftmost bits. Serializing to/from bytes is achieved by performing
bitwise reversals of values and sectors; these reversals are deferred until
access to packed values is needed.

Several constructors are available for specific uses of packed arrays:


	Light data used 4-bit values and 8-bit sectors


	Height data uses 9-bit values and 64-bit sectors


	Block data uses 64-bit sectors





	
storage = None

	The bitstring.BitArray object used for storage.






	
sector_width = None

	The width in bits of sectors. Used in (de)serialization.






	
value_width = None

	The width in bits of values.






	
fresh = None

	Whether this array is new and empty






	
twiddled = None

	Whether this array is contiguous (assumes non-empty, non-aligned)






	
classmethod empty(length, sector_width, value_width)

	Creates an empty array.






	
classmethod empty_light()

	Creates an empty array suitable for storing light data.






	
classmethod empty_block()

	Creates an empty array suitable for storing block data.






	
classmethod empty_height()

	Creates an empty array suitable for storing height data.






	
classmethod from_bytes(bytes, sector_width, value_width=None)

	Deserialize a packed array from the given bytes.






	
classmethod from_light_bytes(bytes)

	Deserialize a packed array from the given light data bytes.






	
classmethod from_block_bytes(bytes, value_width=None)

	Deserialize a packed array from the given block data bytes.






	
classmethod from_height_bytes(bytes)

	Deserialize a packed array from the given height data bytes.






	
to_bytes()

	Serialize this packed array to bytes.






	
init_storage()

	Initializes the storage by performing bitwise reversals.

You should not need to call this method.






	
purge(value_width)

	Re-initialize the storage to use a different value width,
destroying stored data in the process.

You should not need to call this method.






	
is_empty()

	Returns true if this packed array is entirely zeros.










	
class quarry.types.chunk.BlockArray(storage, palette, registry, non_air=-1)

	This class provides support for block arrays. It wraps a
PackedArray object and implements block encoding/decoding,
palettes, and counting of non-air blocks for lighting purposes. It stores
precisely 4096 (16x16x16) values.

All operations associated with fixed-size mutable sequences are supported,
such as slicing.

A palette is used when there are fewer than 256 unique values; the value
width varies from 4 to 8 bits depending on the size of the palette, and is
automatically adjusted upwards as necessary. Use repack()
to reclaim space by eliminating unused entries.

When 256 or more unique values are present, the palette is unused and
values are stored directly.


	
storage = None

	The PackedArray object used for storage.






	
palette = None

	List of encoded block values. Empty when palette is not used.






	
registry = None

	The Registry object used to encode/decode blocks






	
classmethod empty(registry, non_air=-1)

	Creates an empty block array.






	
classmethod from_bytes(bytes, palette, registry, non_air=-1, value_width=None)

	Deserialize a block array from the given bytes.






	
classmethod from_nbt(section, registry, non_air=-1)

	Creates a block array that uses the given NBT section tag as storage
for block data and the palette. Minecraft 1.13+ only.






	
to_bytes()

	Serialize this block array to bytes.






	
is_empty()

	Returns true if this block array is entirely air.






	
non_air

	The number of non-air blocks






	
repack(reserve=None)

	Re-packs internal data to use the smallest possible bits-per-block by
eliminating unused palette entries. This operation is slow as it walks
all blocks to determine the new palette.










Packets

On the client side, you can unpack a Chunk Data [http://wiki.vg/Protocol#Chunk_Data] packet as follows:

def packet_chunk_data(self, buff):
    x, z, full = buff.unpack('ii?')
    bitmask = buff.unpack_varint()
    heightmap = buff.unpack_nbt()  # added in 1.14
    biomes = buff.unpack_array('I', 1024) if full else None  # changed in 1.15
    sections_length = buff.unpack_varint()
    sections = buff.unpack_chunk(bitmask)
    block_entities = [buff.unpack_nbt() for _ in range(buff.unpack_varint())]





On the server side:

def send_chunk(self, x, z, full, heightmap, sections, biomes, block_entities):
    sections_data = self.bt.pack_chunk(sections)
    self.send_packet(
        'chunk_data',
        self.bt.pack('ii?', x, z, full),
        self.bt.pack_chunk_bitmask(sections),
        self.bt.pack_nbt(heightmap),  # added in 1.14
        self.bt.pack_array('I', biomes) if full else b'',  # changed in 1.15
        self.bt.pack_varint(len(sections_data)),
        sections_data,
        self.bt.pack_varint(len(block_entities)),
        b''.join(self.bt.pack_nbt(entity) for entity in block_entities))





The variables used in these examples are as follows:







	Variable

	Value type





	x

	int



	z

	int



	full

	bool



	bitmask

	int



	heightmap

	TagRoot[TagCompound[TagLongArray[PackedArray]]]



	sections

	List[Optional[BlockArray]]



	biomes

	List[int]



	block_entities

	List[TagRoot]









Regions

Quarry can load and save data from the .mca format via the
RegionFile class. NBT tags such as "BlockStates",
"BlockLight", "SkyLight" and heightmaps such as "MOTION_BLOCKING"
make their values available as PackedArray objects.

Use BlockArray.from_nbt() with a
LookupRegistry to create a block array backed
by NBT data. Modifications to the block array will automatically be reflected
in the NBT data, and vice versa.

Putting these pieces together, the following function could be used to set a
block in an existing region file:

import os.path

from quarry.types.nbt import RegionFile
from quarry.types.registry import LookupRegistry
from quarry.types.chunk import BlockArray


def set_block(server_path, x, y, z, block):
    rx, x = divmod(x, 512)
    rz, z = divmod(z, 512)
    cx, x = divmod(x, 16)
    cy, y = divmod(y, 16)
    cz, z = divmod(z, 16)

    jar_path = os.path.join(server_path, "minecraft_server.jar")
    region_path = os.path.join(server_path, "world", "region", "r.%d.%d.mca" % (rx, rz))

    registry = LookupRegistry.from_jar(jar_path)
    with RegionFile(region_path) as region:
        chunk, section = region.load_chunk_section(cx, cy, cz)
        blocks = BlockArray.from_nbt(section, registry)
        blocks[256 * y + 16 * z + x] = block
        region.save_chunk(chunk)


set_block("/path/to/server", 10, 80, 40, {'name': 'minecraft:bedrock'})











          

      

      

    

  

    
      
          
            
  
NBT

Quarry implements the Named Binary Tag (NBT) format. The following tag types
are available from the quarry.types.nbt module:







	Class

	Value type





	TagByte

	int



	TagShort

	int



	TagInt

	int



	TagLong

	int



	TagFloat

	float



	TagDouble

	float



	TagByteArray

	PackedArray with 8-bit sectors



	TagIntArray

	PackedArray with 32-bit sectors



	TagLongArray

	PackedArray with 64-bit sectors



	TagString

	str (py3) or unicode (py2)



	TagList

	list of tags.



	TagCompound

	dict of names and tags.



	TagRoot

	dict containing a single name and tag.







Note

Unlike some other NBT libraries, a tag’s name is stored by its parent -
either a TagRoot or a TagCompound. A tag when considered alone is
always nameless.




Tags

All tag types have the following attributes and methods:


	
Tag.__init__(value)

	Creates a tag object from the given value.






	
classmethod Tag.from_bytes(bytes)

	Creates a tag object from data at the beginning of the supplied byte
string.






	
classmethod Tag.from_buff(buff)

	Creates a tag object from data at the beginning of the supplied
Buffer object.






	
Tag.to_obj()

	Returns a friendly representation of the tag using only basic Python
datatypes. This is a lossy operation, as Python has fewer data types than
NBT.






	
Tag.to_bytes()

	Returns a packed version of the tag as a byte string.






	
Tag.value

	The value of the tag.





When working with NBT in relation to a Protocol,
the Buffer.unpack_nbt() and Buffer.pack_nbt() methods may be
helpful.




Files

You can open an NBT file using the NBTFile class.


	
class quarry.types.nbt.NBTFile(root_tag)

	
	
root_tag = None

	




	
classmethod load(path)

	




	
save(path)

	







You can open Minecraft 1.13+ world files (.mca) using the RegionFile
class, which can also function as a context manager. See Blocks and Chunks for
information on loading block and light data.


	
class quarry.types.nbt.RegionFile(path)

	Experimental support for the Minecraft world storage format (.mca).


	
close()

	Closes the region file.






	
save_chunk(chunk)

	Saves the given chunk, which should be a TagRoot, to the region
file.






	
load_chunk(chunk_x, chunk_z)

	Loads the chunk at the given co-ordinates from the region file.
The co-ordinates should range from 0 to 31. Returns a TagRoot.






	
load_chunk_section(chunk_x, chunk_y, chunk_z)

	Loads the chunk section at the given co-ordinates from the region file.
The co-ordinates should range from 0 to 31. Returns a TagRoot.












Debugging

Call repr(tag) or alt_repr(tag) for a human-readable representation of
a tag.


	
quarry.types.nbt.alt_repr(tag, level=0)

	Returns a human-readable representation of a tag using the same format as
used the NBT specification.











          

      

      

    

  

    
      
          
            
  
UUIDs

Minecraft UUIDs are implemented in the UUID class.


	
class quarry.types.uuid.UUID(hex=None, bytes=None, bytes_le=None, fields=None, int=None, version=None)

	
	
classmethod from_hex(hex)

	




	
classmethod from_bytes(bytes)

	




	
classmethod from_offline_player(display_name)

	




	
classmethod random()

	




	
to_hex(with_dashes=True)

	




	
to_bytes()

	











          

      

      

    

  

    
      
          
            
  
Examples

The quarry source tree includes a few example uses of the quarry module:

# List examples
$ python -m examples

# Run an example
$ python -m examples.client_messenger





If you have quarry in your python search path, you can run the example
files directly.


Clients


Pinger

"""
Pinger example client

This example client connects to a server in "status" mode to retrieve some
information about the server. The information returned is what you'd normally
see in the "Multiplayer" menu of the official client.
"""

from twisted.internet import reactor
from quarry.net.client import ClientFactory, ClientProtocol


class PingProtocol(ClientProtocol):

    def status_response(self, data):
        for k, v in sorted(data.items()):
            if k != "favicon":
                self.logger.info("%s --> %s" % (k, v))

        reactor.stop()


class PingFactory(ClientFactory):
    protocol = PingProtocol
    protocol_mode_next = "status"


def main(argv):
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("host")
    parser.add_argument("-p", "--port", default=25565, type=int)
    args = parser.parse_args(argv)

    factory = PingFactory()
    factory.connect(args.host, args.port)
    reactor.run()

if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Player Lister

"""
Player lister example client

This client requires a Mojang account for online-mode servers. It logs in to
the server and prints the players listed in the tab menu.
"""

from twisted.internet import reactor, defer
from quarry.net.client import ClientFactory, ClientProtocol
from quarry.net.auth import ProfileCLI


class PlayerListProtocol(ClientProtocol):
    def setup(self):
        self.players = {}

    def packet_player_list_item(self, buff):
        # 1.7.x
        if self.protocol_version <= 5:
            p_player_name = buff.unpack_string()
            p_online = buff.unpack('?')
            p_ping = buff.unpack('h')

            if p_online:
                self.players[p_player_name] = {
                    'name': p_player_name,
                    'ping': p_ping
                }
            elif p_player_name in self.players:
                del self.players[p_player_name]
        # 1.8.x
        else:
            p_action = buff.unpack_varint()
            p_count = buff.unpack_varint()
            for i in range(p_count):
                p_uuid = buff.unpack_uuid()
                if p_action == 0:  # ADD_PLAYER
                    p_player_name = buff.unpack_string()
                    p_properties_count = buff.unpack_varint()
                    p_properties = {}
                    for j in range(p_properties_count):
                        p_property_name = buff.unpack_string()
                        p_property_value = buff.unpack_string()
                        p_property_is_signed = buff.unpack('?')
                        if p_property_is_signed:
                            p_property_signature = buff.unpack_string()

                        p_properties[p_property_name] = p_property_value
                    p_gamemode = buff.unpack_varint()
                    p_ping = buff.unpack_varint()
                    p_has_display_name = buff.unpack('?')
                    if p_has_display_name:
                        p_display_name = buff.unpack_chat()
                    else:
                        p_display_name = None

                    self.players[p_uuid] = {
                        'name': p_player_name,
                        'properties': p_properties,
                        'gamemode': p_gamemode,
                        'ping': p_ping,
                        'display_name': p_display_name
                    }

                elif p_action == 1:  # UPDATE_GAMEMODE
                    p_gamemode = buff.unpack_varint()

                    if p_uuid in self.players:
                        self.players[p_uuid]['gamemode'] = p_gamemode
                elif p_action == 2:  # UPDATE_LATENCY
                    p_ping = buff.unpack_varint()

                    if p_uuid in self.players:
                        self.players[p_uuid]['ping'] = p_ping
                elif p_action == 3:  # UPDATE_DISPLAY_NAME
                    p_has_display_name = buff.unpack('?')
                    if p_has_display_name:
                        p_display_name = buff.unpack_chat()
                    else:
                        p_display_name = None

                    if p_uuid in self.players:
                        self.players[p_uuid]['display_name'] = p_display_name
                elif p_action == 4:  # REMOVE_PLAYER
                    if p_uuid in self.players:
                        del self.players[p_uuid]

    def packet_chunk_data(self, buff):
        buff.discard()

        # convert self.players into a more readable format
        printable_players = []
        for data in self.players.values():
            printable_players.append((data['name'], data['ping']))

        for display_name, ping in sorted(printable_players):
            self.logger.info("%4sms %s" % (ping, display_name))

        reactor.stop()


class PlayerListFactory(ClientFactory):
    protocol = PlayerListProtocol


@defer.inlineCallbacks
def run(args):
    # Log in
    profile = yield ProfileCLI.make_profile(args)

    # Create factory
    factory = PlayerListFactory(profile)

    # Connect!
    factory.connect(args.host, args.port)


def main(argv):
    parser = ProfileCLI.make_parser()
    parser.add_argument("host")
    parser.add_argument("-p", "--port", default=25565, type=int)
    args = parser.parse_args(argv)

    run(args)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Chat Logger

"""
Chat logger example client

This client stays in-game after joining. It prints chat messages received from
the server and slowly rotates (thanks c45y for the idea).
"""

from twisted.internet import reactor, defer
from quarry.net.client import ClientFactory, SpawningClientProtocol
from quarry.net.auth import ProfileCLI


class ChatLoggerProtocol(SpawningClientProtocol):
    def packet_chat_message(self, buff):
        p_text = buff.unpack_chat()

        # 1.7.x
        if self.protocol_version <= 5:
            pass
        # 1.8.x
        else:
            p_position = buff.unpack('B')

        self.logger.info(":: %s" % p_text)


class ChatLoggerFactory(ClientFactory):
    protocol = ChatLoggerProtocol


@defer.inlineCallbacks
def run(args):
    # Log in
    profile = yield ProfileCLI.make_profile(args)

    # Create factory
    factory = ChatLoggerFactory(profile)

    # Connect!
    factory.connect(args.host, args.port)


def main(argv):
    parser = ProfileCLI.make_parser()
    parser.add_argument("host")
    parser.add_argument("-p", "--port", default=25565, type=int)
    args = parser.parse_args(argv)

    run(args)
    reactor.run()

if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Messenger

"""
Messenger example client

Bridges minecraft chat (in/out) with stdout and stdin.
"""

import os
import sys

from twisted.internet import defer, reactor, stdio
from twisted.protocols import basic
from quarry.net.auth import ProfileCLI
from quarry.net.client import ClientFactory, SpawningClientProtocol


class StdioProtocol(basic.LineReceiver):
    delimiter = os.linesep.encode('ascii')
    in_encoding  = getattr(sys.stdin,  "encoding", 'utf8')
    out_encoding = getattr(sys.stdout, "encoding", 'utf8')

    def lineReceived(self, line):
        self.minecraft_protocol.send_chat(line.decode(self.in_encoding))

    def send_line(self, text):
        self.sendLine(text.encode(self.out_encoding))


class MinecraftProtocol(SpawningClientProtocol):
    spawned = False

    def packet_chat_message(self, buff):
        p_text = buff.unpack_chat().to_string()

        # 1.7.x
        if self.protocol_version <= 5:
            p_position = 0
        # 1.8.x
        else:
            p_position = buff.unpack('B')

        if p_position in (0, 1) and p_text.strip():
            self.stdio_protocol.send_line(p_text)

    def send_chat(self, text):
        self.send_packet("chat_message", self.buff_type.pack_string(text))


class MinecraftFactory(ClientFactory):
    protocol = MinecraftProtocol
    log_level = "WARN"

    def buildProtocol(self, addr):
        minecraft_protocol = super(MinecraftFactory, self).buildProtocol(addr)
        stdio_protocol = StdioProtocol()

        minecraft_protocol.stdio_protocol = stdio_protocol
        stdio_protocol.minecraft_protocol = minecraft_protocol

        stdio.StandardIO(stdio_protocol)
        return minecraft_protocol


@defer.inlineCallbacks
def run(args):
    # Log in
    profile = yield ProfileCLI.make_profile(args)

    # Create factory
    factory = MinecraftFactory(profile)

    # Connect!
    factory.connect(args.host, args.port)


def main(argv):
    parser = ProfileCLI.make_parser()
    parser.add_argument("host")
    parser.add_argument("port", nargs='?', default=25565, type=int)
    args = parser.parse_args(argv)

    run(args)
    reactor.run()


if __name__ == "__main__":
    main(sys.argv[1:])










Servers


Downtime Server

"""
Example "downtime" server

This server kicks players with the MOTD when they try to connect. It can be
useful for when you want players to know that your usual server is down for
maintenance.
"""

from twisted.internet import reactor
from quarry.net.server import ServerFactory, ServerProtocol


class DowntimeProtocol(ServerProtocol):
    def packet_login_start(self, buff):
        buff.discard()
        self.close(self.factory.motd)


class DowntimeFactory(ServerFactory):
    protocol = DowntimeProtocol


def main(argv):
    # Parse options
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--host", default="", help="address to listen on")
    parser.add_argument("-p", "--port", default=25565, type=int, help="port to listen on")
    parser.add_argument("-m", "--message", default="We're down for maintenance",
                        help="message to kick users with")
    args = parser.parse_args(argv)

    # Create factory
    factory = DowntimeFactory()
    factory.motd = args.message

    # Listen
    factory.listen(args.host, args.port)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Auth Server

"""
Example "auth" server

This server authenticates players with the mojang session server, then kicks
them. Useful for server websites that ask users for a valid Minecraft account.
"""

from twisted.internet import reactor
from quarry.net.server import ServerFactory, ServerProtocol


class AuthProtocol(ServerProtocol):
    def player_joined(self):
        # This method gets called when a player successfully joins the server.
        #   If we're in online mode (the default), this means auth with the
        #   session server was successful and the user definitely owns the
        #   display name they claim to.

        # Call super. This switches us to "play" mode, marks the player as
        #   in-game, and does some logging.
        ServerProtocol.player_joined(self)

        # Define your own logic here. It could be an HTTP request to an API,
        #   or perhaps an update to a database table.
        display_name = self.display_name
        ip_addr = self.remote_addr.host
        self.logger.info("[%s authed with IP %s]" % (display_name, ip_addr))

        # Kick the player.
        self.close("Thanks, you are now registered!")


class AuthFactory(ServerFactory):
    protocol = AuthProtocol
    motd = "Auth Server"


def main(argv):
    # Parse options
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--host", default="", help="address to listen on")
    parser.add_argument("-p", "--port", default=25565, type=int, help="port to listen on")
    args = parser.parse_args(argv)

    # Create factory
    factory = AuthFactory()

    # Listen
    factory.listen(args.host, args.port)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])








Chat Room Server

"""
Example "chat room" server

This server authenticates players, then spawns them in an empty world and does
the bare minimum to keep them in-game. Players can speak to eachother using
chat.

Supports Minecraft 1.15. Earlier versions will not work as the packet formats
differ.
"""

from twisted.internet import reactor
from quarry.net.server import ServerFactory, ServerProtocol


class ChatRoomProtocol(ServerProtocol):
    def player_joined(self):
        # Call super. This switches us to "play" mode, marks the player as
        #   in-game, and does some logging.
        ServerProtocol.player_joined(self)

        # Send "Join Game" packet
        self.send_packet("join_game",
            self.buff_type.pack("iBqiB",
                0,                              # entity id
                3,                              # game mode
                0,                              # dimension
                0,                              # hashed seed
                0),                             # max players
            self.buff_type.pack_string("flat"), # level type
            self.buff_type.pack_varint(1),      # view distance
            self.buff_type.pack("??",
                False,                          # reduced debug info
                True))                          # show respawn screen

        # Send "Player Position and Look" packet
        self.send_packet("player_position_and_look",
            self.buff_type.pack("dddff?",
                0,                         # x
                255,                       # y
                0,                         # z
                0,                         # yaw
                0,                         # pitch
                0b00000),                  # flags
            self.buff_type.pack_varint(0)) # teleport id

        # Start sending "Keep Alive" packets
        self.ticker.add_loop(20, self.update_keep_alive)

        # Announce player joined
        self.factory.send_chat(u"\u00a7e%s has joined." % self.display_name)

    def player_left(self):
        ServerProtocol.player_left(self)

        # Announce player left
        self.factory.send_chat(u"\u00a7e%s has left." % self.display_name)

    def update_keep_alive(self):
        # Send a "Keep Alive" packet

        # 1.7.x
        if self.protocol_version <= 338:
            payload =  self.buff_type.pack_varint(0)

        # 1.12.2
        else:
            payload = self.buff_type.pack('Q', 0)

        self.send_packet("keep_alive", payload)

    def packet_chat_message(self, buff):
        # When we receive a chat message from the player, ask the factory
        # to relay it to all connected players
        p_text = buff.unpack_string()
        self.factory.send_chat("<%s> %s" % (self.display_name, p_text))


class ChatRoomFactory(ServerFactory):
    protocol = ChatRoomProtocol
    motd = "Chat Room Server"

    def send_chat(self, message):
        for player in self.players:
            player.send_packet("chat_message",player.buff_type.pack_chat(message) + player.buff_type.pack('B', 0) )


def main(argv):
    # Parse options
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--host", default="", help="address to listen on")
    parser.add_argument("-p", "--port", default=25565, type=int, help="port to listen on")
    args = parser.parse_args(argv)

    # Create factory
    factory = ChatRoomFactory()

    # Listen
    factory.listen(args.host, args.port)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])










Proxies


Chat Hider Proxy

"""
"Quiet mode" example proxy

Allows a client to turn on "quiet mode" which hides chat messages
"""

from twisted.internet import reactor
from quarry.net.proxy import DownstreamFactory, Bridge


class QuietBridge(Bridge):
    quiet_mode = False

    def packet_upstream_chat_message(self, buff):
        buff.save()
        chat_message = self.read_chat(buff, "upstream")
        self.logger.info(" >> %s" % chat_message)

        if chat_message.startswith("/quiet"):
            # Switch mode
            self.quiet_mode = not self.quiet_mode

            action = self.quiet_mode and "enabled" or "disabled"
            msg = "Quiet mode %s" % action
            self.downstream.send_packet("chat_message",
                                        self.write_chat(msg, "downstream"))

        elif self.quiet_mode and not chat_message.startswith("/"):
            # Don't let the player send chat messages in quiet mode
            msg = "Can't send messages while in quiet mode"
            self.downstream.send_packet("chat_message",
                                        self.write_chat(msg, "downstream"))

        else:
            # Pass to upstream
            buff.restore()
            self.upstream.send_packet("chat_message", buff.read())

    def packet_downstream_chat_message(self, buff):
        chat_message = self.read_chat(buff, "downstream")
        self.logger.info(" :: %s" % chat_message)

        if self.quiet_mode and chat_message.startswith("<"):
            # Ignore message we're in quiet mode and it looks like chat
            pass

        else:
            # Pass to downstream
            buff.restore()
            self.downstream.send_packet("chat_message", buff.read())

    def read_chat(self, buff, direction):
        buff.save()
        if direction == "upstream":
            p_text = buff.unpack_string()
            return p_text
        elif direction == "downstream":
            p_text = str(buff.unpack_chat())

            # 1.7.x
            if self.upstream.protocol_version <= 5:
                p_position = 0

            # 1.8.x
            else:
                p_position = buff.unpack('B')

            if p_position in (0, 1):
                return p_text

    def write_chat(self, text, direction):
        if direction == "upstream":
            return self.buff_type.pack_string(text)
        elif direction == "downstream":
            data = self.buff_type.pack_chat(text)

            # 1.7.x
            if self.downstream.protocol_version <= 5:
                pass

            # 1.8.x
            else:
                data += self.buff_type.pack('B', 0)

            return data


class QuietDownstreamFactory(DownstreamFactory):
    bridge_class = QuietBridge
    motd = "Proxy Server"


def main(argv):
    # Parse options
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--listen-host", default="", help="address to listen on")
    parser.add_argument("-p", "--listen-port", default=25565, type=int, help="port to listen on")
    parser.add_argument("-b", "--connect-host", default="127.0.0.1", help="address to connect to")
    parser.add_argument("-q", "--connect-port", default=25565, type=int, help="port to connect to")
    args = parser.parse_args(argv)

    # Create factory
    factory = QuietDownstreamFactory()
    factory.connect_host = args.connect_host
    factory.connect_port = args.connect_port

    # Listen
    factory.listen(args.listen_host, args.listen_port)
    reactor.run()


if __name__ == "__main__":
    import sys
    main(sys.argv[1:])













          

      

      

    

  

    
      
          
            
  
Changelog


master

Nothing yet.




v1.5.1


	Added support for Minecraft 1.15.2







v1.5


	Added support for Minecraft 1.15 and 1.15.1


	Dropped support for Python 3.4


	Added TagRoot.from_body() constructor.


	Added Message.__repr__() method.


	Revised implementation of chunk data


	Added dependency on bitstring


	Added a new PackedArray class for working with tightly-packed arrays.
This replaces the LightArray class, and additionally supports
heightmaps and raw block data. This particular implementation ensures
values are contiguous in memory, which speeds up gets/sets at the expense
of a de/serialization process that involves two passes of bitwise
reversals.


	Reworked BlockArray to use PackedArray internally.


	Changed the value type of NBT arrays from a list of int to a
PackedArray. A heuristic is used to determine the value width.


	Revised Buffer1_14.un/pack_chunk_section() to include arguments for
block/skylight data, for consistency with earlier Buffer classes.


	Added Buffer1_9.un/pack_chunk() methods.


	Added Buffer1_9.un/pack_chunk_section_array() methods.


	Added Buffer1_9.pack_chunk_bitmask() method.











v1.4


	Added support for Minecraft 1.14.3 and 1.14.4


	Fixed support for Minecraft 1.7







v1.3


	Added support for Minecraft 1.14 - 1.14.2


	BREAKING CHANGE! BlockMap objects are replaced by Registry objects
with greater responsibilities, reflecting the increase in information
generated by the official server when run with --reports. Villager and
particle data is now decoded when using a LookupRegistry in a buffer.
Other information (for example, mob names from IDs) can be decoded in
packet handlers.


	BlockArray objects now track the number of non-air blocks, which is
conveyed in chunk_data packets.


	Added methods for packing/unpacking optional varints, rotation, direction,
villager and pose data.











v1.2


	Added support for Minecraft 1.13.2


	Fixed support for server icons (thanks @dries007) and added caching.







v1.1.1


	Various bugfixes.







v1.1


	Added support for Minecraft 1.13.


	Added 1.13 packet enumeration.


	The wire format of chunk sections, entity metadata and slots has changed.
Slots no longer contain a ‘damage’ field.


	Added methods for packing/unpacking particles and command graphs.


	Clients now respond to login_plugin_request messages with a
login_plugin_response indicating that the client didn’t understand the
request. Like other quarry packet handlers, this method can be overridden
in a subclass to implement a custom authentication flow.






	Slot/blocks/chunks/regions improvements:


	Added quarry.types.block module, containing three classes for handling
block and item IDs:


	OpaqueBlockMap passes IDs through unchanged


	BitShiftBlockMap decodes blocks by bit-shifting - this format is used
in Minecraft 1.7 through 1.12. Item IDs pass through unchanged.


	LookupBlockMap decodes by looking up in a dictionary. This class has
from_jar() and from_json() methods for loading this dictionary
from the official server (1.13+).




Buffer types gain a block_map attribute. By default this is an
OpaqueBlockMap(13). The buffer’s block map is consulted by methods that
deal with slots, entity metadata and chunk data.

BlockArray objects must now be given a block map on initialization, and
will pass getitem/setitem values through the map.



	Added quarry.types.nbt.RegionFile class, which supports reading and
writing NBT chunk data to .mca files.


	BlockArray and LightArray now support a from_nbt() class
method. This creates an array that is a view on to an NBT compound tag
representing a section (as might be retrieved via a RegionFile).
Supports Minecraft 1.13+ only.


	BlockArray.palette is now an empty list rather than None when a
palette is not in use


	Added Buffer.pack_block() and Buffer.unpack_block() methods.


	Slot dictionaries now use an 'item' key to store the item identifier,
rather than 'id'. An empty slot is now represented with an 'item'
value of None rather than -1.






	Added quarry.types.nbt.TagLongArray class.


	Added quarry.types.nbt.TagRoot.body property to retrieve the child tag.


	Added quarry.types.nbt._Tag.from_bytes() method.


	Added quarry.types.uuid.UUID.random() constructor.


	Added Protocol.get_packet_name() and Protocol.get_packet_ident()
methods. These can be overridden to support custom packet name lookup
behaviour.


	Moved PacketDispatcher.dump_packet() to Buffer.hexdump().


	Fixed unpacking of byte entity metadata.


	Fixed NBT handling of 1-length arrays.


	Fixed SpawningClientProtocol not responding to keep-alives.


	Fixed unicode handling in chat unpacking.







v1.0


	Changes to quarry.types.buffer:


	Split Buffer into Buffer1_7 and Buffer_1_9, and select an
appropriate buffer type by protocol version. This is done in anticipation
of revisions to the slot and entity metadata formats in 1.13.


	Moved some packet framing logic from Protocol into
Buffer.pack_packet() and Buffer.unpack_packet()


	Added Buffer.pack_optional() and Buffer.unpack_optional(), which
handle boolean-prefixed optional data.


	Added Buffer.pack_array() and Buffer.unpack_array() convenience
methods.


	Made Buffer.pack_entity_metadata() and
Buffer.unpack_entity_metadata() work with a dictionary rather than a
list of tuples. Also corrected a couple of issues with re-packing data.


	Removed the signed argument from Buffer.pack_varint() and
Buffer.unpack_varint(). All varints are now signed.






	Changes to quarry.types.chunk:


	Made BlockArray setitem/getitem accept/return an opaque ID, rather than
a 2-tuple of (block_id, metadata). In Minecraft 1.13 it’s no longer
possible to convert between the two with bitshifting.


	Added BlockArray.empty() and LightArray.empty() methods to
initialize empty (zero-filled) block/light arrays.


	Added BlockArray.is_empty() method, which can be used by servers to
check whether a chunk section should be sent.






	Changes to quarry.types.nbt:


	Added TagCompound.update() method, which performs a “deep” update of an
NBT tree.






	Changes to quarry.net:


	Added Proxy.disable_forwarding()


	ClientFactory.connect() no longer accepts protocol_mode_next and
protocol_version arguments.


	ServerFactory.force_protocol_version has moved to
Factory.force_protocol_version, and is now observed by clients.


	ClientProtocol.protocol_mode_next has moved to
ClientFactory.protocol_mode_next, and now defaults to “login”.


	Removed Protocol.compression_enabled. Uncompressed connections are now
indicated by Protocol.compression_threshold == -1.


	Modified Profile.validate() to not automatically attempt to refresh
invalid profiles. This should be an explicit user choice.


	Added Profile.to_file(), which saves to a JSON file containing a
subset of the information available in
~/.minecraft/launcher_profiles.json.


	Fixed restarting a stopped Ticker.






	Fixed client_messenger chat unpacking.


	Fixed the entity_properties and advancements packets being swapped.







v0.9.1


	Dropped support for Python 3.3.


	Fixed Python 3.4+ compatibility issues.


	Made SpawningClientProtocol send player_position_and_look rather than
player_position.


	Fixed ticker logger being None.







v0.9


	Added support for Minecraft 1.12.2.


	Added documentation for proxies


	Added a “fast forwarding” mode for proxies that skips packing/unpacking of
packets.


	Re-arranged some proxy internals.


	Replaced quarry.net.tasks with quarry.net.ticker. An instance of the
Ticker class is available as self.ticker from protocols. This object
has add_delay() and add_loop() methods for setting up delayed and
repeating tasks respectively. The interface similar to the previous Tasks
object, except that timings are now given in ticks rather than seconds. The
new tick loop is closer to the vanilla minecraft tick loop: delayed ticks are
run faster the usual, and when too many ticks are queued they are skipped
altogether.


	Added quarry.types.chat module for handling Minecraft chat. Chat
packing/unpacking methods in Buffer now accept/return an instance of the
Message class.


	Added Buffer.pack_slot() method.


	Added Buffer.pack_entity_metadata() and
Buffer.unpack_entity_metadata() methods.


	Added ServerFactory.prevent_proxy_connections attribute, defaulting to
True, that prevents clients from connecting via a proxy. Note that this
specifically affects online mode, and works by comparing the IP of the
connecting client with the IP recorded as making the authentication request
with the Mojang session server.







v0.8


	Added support for Minecraft 1.12.1. Thanks to Christian Hogan for the patch.







v0.7


	Added support for Minecraft 1.12


	Several breaking changes! Read on for more.


	Removed the quarry.utils package. Its contents have been distributed
as follows:


	The buffer, chunk, nbt and uuid (renamed from types)
modules have moved into a new quarry.types package.


	The auth, crypto, http and tasks modules have moved into
the quarry.net package.


	The error module was removed. ProtocolError is now part of
quarry.net.protocol.






	Revised the NBT implementation


	TagByteArray and TagIntArray have more straightforward signatures
for __init__ and from_buff


	TagList now stores its contents as a list of tags, rather than a list
of tag values. It no longer accepts an inner_kind initialiser
parameter, as this is derived from the type of the first supplied tag.


	NamedTag is removed.


	TagCompound now stores its value as a dict of names and tags,
rather than a list of NamedTag objects.


	TagRoot is introduced as the top-level tag. This is essentially a
TagCompound containing a single record.


	Added a new alt_repr function that prints a tag using the same
representation as in the NBT specification.


	Improved performance.


	Added some tests.






	Substantially expanded documentation.


	Added a new server_chat_room example. This server spawns a player in an
empty world and allows player to chat to eachother.


	Made Protocol.send_packet() accept any number of data arguments,
which are concatenated together.


	Made Buffer.__init__() accept a string argument, which is equivalent to
creating an empty buffer and calling add().


	Added Buffer.pack_chunk_section() and Buffer.unpack_chunk_section().
These methods work with new quarry.types.chunk types: LightArray
(4 bits per block) and BlockArray (4-8 or 13 bits per block, with an
optional palette).


	Added Buffer.pack_position(), which packs co-ordinates into a long
and complements Buffer.unpack_position().


	Added a Bridge.make_profile() method, which is called to provide a profile
to the UpstreamFactory. The default implementation generates an offline
profile with the same display name as the Downstream.







v0.6.3


	Fix bundle







v0.6.2


	Added support for Minecraft 1.11.2


	Added a default implementation for the “disconnect” packet, which now does
the same thing as “login_disconnect”, i.e. logs a warning and closes the
connection.







v0.6.1


	Fix bundle







v0.6


	Added support for Minecraft 1.11


	BREAKING CHANGES!


	Throughout the codebase, references to username have changed to
display_name for consistency with Mojang’s terminology.


	Factory.run() and Factory.stop() have been removed for being
misleading about the role of factories. Use twisted’s reactor.run()
instead.


	quarry.mojang has been renamed to quarry.auth and substantially
rewritten.


	Offline profiles are now represented by OfflineProfile objects.


	Online profiles have a number of new static creator methods:
- from_credentials() accepts an email address and password
- from_token() accepts a client and access token, display name and UUID
- from_file() loads a profile from the Mojang launcher.


	A new ProfileCLI class provides a couple of useful methods for
creating profiles from command-line arguments.


	Profiles must now be provided to the ClientFactory initializer, rather
than set as a class variable. When a profile is not given, an offline
profile is used. In proxies, the initialiser for UpstreamFactory must
be re-implemented if the proxy connects to the backing server in online
mode.


	Factory.auth_timeout has moved to ServerFactory.auth_timeout.
Clients now use Profile.timeout when calling /join endpoint.






	ClientFactory.connect returns a deferred that will fire after after
reactor.connectTCP is called for the last time. Usually there is a small
time delay before this happens while quarry queries the server’s version.


	Clients will refresh a profile if /join indicates a token is invalid, then
retry the /join once.


	Added a new SpawningClientProtocol class that implements enough packets
to keep a player in-game


	Added a new client_messenger example. This bridges minecraft chat
(in/out) with stdout and stdin.







v0.5


	Added Buffer.unpack_nbt() and Buffer.pack_nbt() methods for working
with the NBT (Named Binary Tag) format.


	Added Buffer.unpack_position() method. This unpacks a 26/12/26-packed
position.


	Added strip_styles parameter to Buffer.unpack_chat(). If set to
false, text is returned including old-style style escapes (U+00A7 plus a
character)


	A stopping client factory no longer invalidates its profile.


	Added Python 3 compatibility to PacketDispatcher.dump_packet()


	Fix tests for Buffer.unpack_chat()







v0.4


	Added support for Minecraft 1.10


	Added support for Minecraft 1.9.3 and 1.9.4


	Improved the varint implementation - it now supports signed and
magnitude-limited numbers. Also added some sensible defaults to various bits
of quarry that use varints.


	Made Buffer.unpack_chat() not add curly braces to “translate” objects
without accompanying “with” objects.


	Made Buffer.unpack_chat() strip old-style (u00A7) chat escapes.







v0.3.1


	Added support for Minecraft 1.9.1 and 1.9.2


	Fixed protocol error in example chat logger when connecting to 1.9 servers







v0.3


	Added support for Minecraft 1.9


	Compression is now supported in servers


	Servers will now reject new connections when full


	Servers will now report a forced protocol version in status responses, rather
than repeating the client’s version.


	The point at which a proxy will connect to the upstream server is now
customisable.


	Renamed “maps” packet to “map”


	Renamed “sign editor open” packet to “open sign editor”


	Renamed ServerFactory.favicon_path to ServerFactory.favicon


	Renamed quarry.util to quarry.utils


	Removed protocol_mode parameter from some proxy callbacks


	Added many new docstrings; made documentation use Sphinx’s autodoc


	Fixed exception handling when looking up a packet name. Thanks to PangeaCake
for the fix.


	Fixed issue where an exception was raised when generating an offline-mode
UUID in Python 3. Thanks to PangeaCake for the report.


	Fixed issue with compression in proxies when the upstream server set the
compression threshold after passthrough had been enabled. Thanks to
PangeaCake for the report.


	(tests) quarry.utils.buffer and quarry.utils.types are now covered.







v0.2.3


	(documentation) Fixed changelog for v0.2.2







v0.2.2


	Fixed proxies


	(documentation) Added changelog







v0.2.1


	(documentation) Fixed front page







v0.2


	Tentative Python 3 support


	Removed @register. Packet handlers are now looked up by method name


	Packets are now addressed by name, rather than mode and ident


	Protocol.recv_addr renamed to Protocol.remote_addr


	Client profile is automatically invalidated when ClientFactory stops


	(internals) PacketDispatcher moved from quarry.util to quarry.net


	(examples) Chat logger now closely emulates vanilla client behaviour when
sending “player”


	(documentation) It now exists!







v0.1


	Initial release










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   q
   


   
     		 	

     		
       q	

     
       	[image: -]
       	
       quarry	
       

     
       	
       	   
       quarry.net.auth	
       

     
       	
       	   
       quarry.net.client	
       

     
       	
       	   
       quarry.net.protocol	
       

     
       	
       	   
       quarry.net.server	
       

     
       	
       	   
       quarry.net.ticker	
       

     
       	
       	   
       quarry.types.buffer	
       

     
       	
       	   
       quarry.types.chat	
       

     
       	
       	   
       quarry.types.nbt	
       

     
       	
       	   
       quarry.types.registry	
       

     
       	
       	   
       quarry.types.uuid	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 


_


  	
      	__init__() (quarry.net.auth.OfflineProfile method)

      
        	(quarry.net.client.ClientFactory method)


        	(quarry.net.server.ServerFactory method)


        	(quarry.types.nbt.Tag method)


      


  





A


  	
      	add() (quarry.types.buffer.Buffer method)


      	add_delay() (quarry.net.ticker.Ticker method)


      	add_loop() (quarry.net.ticker.Ticker method)


  

  	
      	alt_repr() (in module quarry.types.nbt)


      	auth_failed() (quarry.net.protocol.Protocol method)


      	auth_ok() (quarry.net.protocol.Protocol method)


      	auth_timeout (quarry.net.server.ServerFactory attribute)


  





B


  	
      	BitShiftRegistry (class in quarry.types.registry)


      	BlockArray (class in quarry.types.chunk)


      	Bridge (class in quarry.net.proxy)


  

  	
      	bridge_class (quarry.net.proxy.DownstreamFactory attribute)


      	buff_type (quarry.net.protocol.Protocol attribute)


      	Buffer (class in quarry.types.buffer)


  





C


  	
      	ClientFactory (class in quarry.net.client)


      	ClientProtocol (class in quarry.net.client)


      	close() (quarry.net.protocol.Protocol method)

      
        	(quarry.types.nbt.RegionFile method)


      


      	closed (quarry.net.protocol.Protocol attribute)


      	compression_threshold (quarry.net.server.ServerFactory attribute)


      	connect() (quarry.net.client.ClientFactory method)

      
        	(quarry.net.proxy.Bridge method)


      


  

  	
      	connect_host (quarry.net.proxy.DownstreamFactory attribute)

      
        	(quarry.net.server.ServerProtocol attribute)


      


      	connect_port (quarry.net.proxy.DownstreamFactory attribute)

      
        	(quarry.net.server.ServerProtocol attribute)


      


      	connection_lost() (quarry.net.protocol.Protocol method)


      	connection_made() (quarry.net.protocol.Protocol method)


      	connection_timed_out() (quarry.net.protocol.Protocol method)


  





D


  	
      	decode() (quarry.types.registry.Registry method)


      	decode_block() (quarry.types.registry.Registry method)


      	discard() (quarry.types.buffer.Buffer method)


      	display_name (quarry.net.server.ServerProtocol attribute)


      	display_name_confirmed (quarry.net.server.ServerProtocol attribute)


  

  	
      	downstream (quarry.net.proxy.Bridge attribute)


      	downstream_disconnected() (quarry.net.proxy.Bridge method)


      	downstream_factory (quarry.net.proxy.Bridge attribute)


      	downstream_ready() (quarry.net.proxy.Bridge method)


      	DownstreamFactory (class in quarry.net.proxy)


  





E


  	
      	empty() (quarry.types.chunk.BlockArray class method)

      
        	(quarry.types.chunk.PackedArray class method)


      


      	empty_block() (quarry.types.chunk.PackedArray class method)


      	empty_height() (quarry.types.chunk.PackedArray class method)


  

  	
      	empty_light() (quarry.types.chunk.PackedArray class method)


      	enable_fast_forwarding() (quarry.net.proxy.Bridge method)


      	enable_forwarding() (quarry.net.proxy.Bridge method)


      	encode() (quarry.types.registry.Registry method)


      	encode_block() (quarry.types.registry.Registry method)


  





F


  	
      	factory (quarry.net.protocol.Protocol attribute)


      	force_protocol_version (quarry.net.client.ClientFactory attribute)

      
        	(quarry.net.server.ServerFactory attribute)


      


      	fresh (quarry.types.chunk.PackedArray attribute)


      	from_block_bytes() (quarry.types.chunk.PackedArray class method)


      	from_buff() (quarry.types.chat.Message class method)

      
        	(quarry.types.nbt.Tag class method)


      


      	from_bytes() (quarry.types.chunk.BlockArray class method)

      
        	(quarry.types.chunk.PackedArray class method)


        	(quarry.types.nbt.Tag class method)


        	(quarry.types.uuid.UUID class method)


      


  

  	
      	from_credentials() (quarry.net.auth.Profile class method)


      	from_display_name() (quarry.net.auth.OfflineProfile class method)


      	from_file() (quarry.net.auth.Profile class method)


      	from_height_bytes() (quarry.types.chunk.PackedArray class method)


      	from_hex() (quarry.types.uuid.UUID class method)


      	from_jar() (quarry.types.registry.LookupRegistry class method)


      	from_json() (quarry.types.registry.LookupRegistry class method)


      	from_light_bytes() (quarry.types.chunk.PackedArray class method)


      	from_nbt() (quarry.types.chunk.BlockArray class method)


      	from_offline_player() (quarry.types.uuid.UUID class method)


      	from_string() (quarry.types.chat.Message class method)


      	from_token() (quarry.net.auth.Profile class method)


  





G


  	
      	get_buff_type() (quarry.net.client.ClientFactory method)

      
        	(quarry.net.server.ServerFactory method)


      


  

  	
      	get_packet_ident() (quarry.net.protocol.Protocol method)


      	get_packet_name() (quarry.net.protocol.Protocol method)


  





I


  	
      	icon_path (quarry.net.server.ServerFactory attribute)


      	in_game (quarry.net.protocol.Protocol attribute)


      	init_storage() (quarry.types.chunk.PackedArray method)


  

  	
      	interval (quarry.net.ticker.Ticker attribute)


      	is_air_block() (quarry.types.registry.Registry method)


      	is_empty() (quarry.types.chunk.BlockArray method)

      
        	(quarry.types.chunk.PackedArray method)


      


  





L


  	
      	listen() (quarry.net.server.ServerFactory method)


      	load() (quarry.types.nbt.NBTFile class method)


      	load_chunk() (quarry.types.nbt.RegionFile method)


      	load_chunk_section() (quarry.types.nbt.RegionFile method)


  

  	
      	log_level (quarry.net.proxy.Bridge attribute)


      	log_packet() (quarry.net.protocol.Protocol method)


      	logger (quarry.net.protocol.Protocol attribute)

      
        	(quarry.net.proxy.Bridge attribute)


      


      	LookupRegistry (class in quarry.types.registry)


  





M


  	
      	make_profile() (quarry.net.proxy.Bridge method)


      	max_lag (quarry.net.ticker.Ticker attribute)


  

  	
      	max_players (quarry.net.server.ServerFactory attribute)


      	Message (class in quarry.types.chat)


      	motd (quarry.net.server.ServerFactory attribute)


  





N


  	
      	NBTFile (class in quarry.types.nbt)


  

  	
      	non_air (quarry.types.chunk.BlockArray attribute)


  





O


  	
      	OfflineProfile (class in quarry.net.auth)


  

  	
      	online_mode (quarry.net.server.ServerFactory attribute)


      	OpaqueRegistry (class in quarry.types.registry)


  





P


  	
      	pack() (quarry.types.buffer.Buffer class method)


      	pack_array() (quarry.types.buffer.Buffer class method)


      	pack_block() (quarry.types.buffer.Buffer class method)


      	pack_chat() (quarry.types.buffer.Buffer class method)


      	pack_chunk_section() (quarry.types.buffer.Buffer class method)


      	pack_command_node() (quarry.types.buffer.Buffer class method)


      	pack_command_node_properties() (quarry.types.buffer.Buffer class method)


      	pack_commands() (quarry.types.buffer.Buffer class method)


      	pack_direction() (quarry.types.buffer.Buffer class method)


      	pack_entity_metadata() (quarry.types.buffer.Buffer class method)


      	pack_ingredient() (quarry.types.buffer.Buffer class method)


      	pack_json() (quarry.types.buffer.Buffer class method)


      	pack_nbt() (quarry.types.buffer.Buffer class method)


      	pack_optional() (quarry.types.buffer.Buffer class method)


      	pack_optional_varint() (quarry.types.buffer.Buffer class method)


      	pack_packet() (quarry.types.buffer.Buffer class method)


      	pack_particle() (quarry.types.buffer.Buffer class method)


      	pack_pose() (quarry.types.buffer.Buffer class method)


      	pack_position() (quarry.types.buffer.Buffer class method)


      	pack_recipe() (quarry.types.buffer.Buffer class method)


  

  	
      	pack_rotation() (quarry.types.buffer.Buffer class method)


      	pack_slot() (quarry.types.buffer.Buffer class method)


      	pack_string() (quarry.types.buffer.Buffer class method)


      	pack_uuid() (quarry.types.buffer.Buffer class method)


      	pack_varint() (quarry.types.buffer.Buffer class method)


      	pack_villager() (quarry.types.buffer.Buffer class method)


      	PackedArray (class in quarry.types.chunk)


      	packet_received() (quarry.net.protocol.Protocol method)

      
        	(quarry.net.proxy.Bridge method)


      


      	packet_unhandled() (quarry.net.protocol.Protocol method)

      
        	(quarry.net.proxy.Bridge method)


      


      	palette (quarry.types.chunk.BlockArray attribute)


      	player_joined() (quarry.net.protocol.Protocol method)


      	player_left() (quarry.net.protocol.Protocol method)


      	players (quarry.net.server.ServerFactory attribute)


      	prevent_proxy_connections (quarry.net.server.ServerFactory attribute)


      	Profile (class in quarry.net.auth)


      	Protocol (class in quarry.net.protocol)


      	protocol (quarry.net.client.ClientFactory attribute)

      
        	(quarry.net.server.ServerFactory attribute)


      


      	purge() (quarry.types.chunk.PackedArray method)


  





Q


  	
      	quarry.net.auth (module)


      	quarry.net.client (module)


      	quarry.net.protocol (module)


      	quarry.net.server (module)


      	quarry.net.ticker (module)


  

  	
      	quarry.types.buffer (module)


      	quarry.types.chat (module)


      	quarry.types.nbt (module)


      	quarry.types.registry (module)


      	quarry.types.uuid (module)


  





R


  	
      	random() (quarry.types.uuid.UUID class method)


      	read() (quarry.types.buffer.Buffer method)


      	RegionFile (class in quarry.types.nbt)


      	registry (quarry.types.buffer.Buffer attribute)

      
        	(quarry.types.chunk.BlockArray attribute)


      


  

  	
      	remote_addr (quarry.net.protocol.Protocol attribute)


      	remove() (quarry.net.ticker.Ticker method)


      	remove_all() (quarry.net.ticker.Ticker method)


      	repack() (quarry.types.chunk.BlockArray method)


      	restore() (quarry.types.buffer.Buffer method)


      	root_tag (quarry.types.nbt.NBTFile attribute)


  





S


  	
      	save() (quarry.types.buffer.Buffer method)

      
        	(quarry.types.nbt.NBTFile method)


      


      	save_chunk() (quarry.types.nbt.RegionFile method)


      	sector_width (quarry.types.chunk.PackedArray attribute)


      	send_packet() (quarry.net.protocol.Protocol method)


      	ServerFactory (class in quarry.net.server)


  

  	
      	ServerProtocol (class in quarry.net.server)


      	SpawningClientProtocol (class in quarry.net.client)


      	start() (quarry.net.ticker.Ticker method)


      	stop() (quarry.net.ticker.Ticker method)


      	storage (quarry.types.chunk.BlockArray attribute)

      
        	(quarry.types.chunk.PackedArray attribute)


      


      	strip_chat_styles() (quarry.types.chat.Message class method)


  





T


  	
      	tick (quarry.net.ticker.Ticker attribute)


      	Ticker (class in quarry.net.ticker)


      	ticker (quarry.net.protocol.Protocol attribute)


      	to_bytes() (quarry.types.chat.Message method)

      
        	(quarry.types.chunk.BlockArray method)


        	(quarry.types.chunk.PackedArray method)


        	(quarry.types.nbt.Tag method)


        	(quarry.types.uuid.UUID method)


      


  

  	
      	to_file() (quarry.net.auth.Profile method)


      	to_hex() (quarry.types.uuid.UUID method)


      	to_obj() (quarry.types.nbt.Tag method)


      	to_string() (quarry.types.chat.Message method)


      	twiddled (quarry.types.chunk.PackedArray attribute)


  





U


  	
      	unpack() (quarry.types.buffer.Buffer method)


      	unpack_array() (quarry.types.buffer.Buffer method)


      	unpack_block() (quarry.types.buffer.Buffer method)


      	unpack_chat() (quarry.types.buffer.Buffer method)


      	unpack_chunk_section() (quarry.types.buffer.Buffer method)


      	unpack_command_node() (quarry.types.buffer.Buffer method)


      	unpack_command_node_properties() (quarry.types.buffer.Buffer method)


      	unpack_commands() (quarry.types.buffer.Buffer method)


      	unpack_direction() (quarry.types.buffer.Buffer method)


      	unpack_entity_metadata() (quarry.types.buffer.Buffer method)


      	unpack_ingredient() (quarry.types.buffer.Buffer method)


      	unpack_json() (quarry.types.buffer.Buffer method)


      	unpack_nbt() (quarry.types.buffer.Buffer method)


      	unpack_optional() (quarry.types.buffer.Buffer method)


      	unpack_optional_varint() (quarry.types.buffer.Buffer method)


      	unpack_packet() (quarry.types.buffer.Buffer method)


  

  	
      	unpack_particle() (quarry.types.buffer.Buffer method)


      	unpack_pose() (quarry.types.buffer.Buffer method)


      	unpack_position() (quarry.types.buffer.Buffer method)


      	unpack_recipe() (quarry.types.buffer.Buffer method)


      	unpack_rotation() (quarry.types.buffer.Buffer method)


      	unpack_slot() (quarry.types.buffer.Buffer method)


      	unpack_string() (quarry.types.buffer.Buffer method)


      	unpack_uuid() (quarry.types.buffer.Buffer method)


      	unpack_varint() (quarry.types.buffer.Buffer method)


      	unpack_villager() (quarry.types.buffer.Buffer method)


      	upstream (quarry.net.proxy.Bridge attribute)


      	upstream_disconnected() (quarry.net.proxy.Bridge method)


      	upstream_factory (quarry.net.proxy.Bridge attribute)


      	upstream_factory_class (quarry.net.proxy.Bridge attribute)


      	upstream_profile (quarry.net.proxy.Bridge attribute)


      	upstream_ready() (quarry.net.proxy.Bridge method)


      	UUID (class in quarry.types.uuid)


  





V


  	
      	value (quarry.types.nbt.Tag attribute)


  

  	
      	value_width (quarry.types.chunk.PackedArray attribute)


  







          

      

      

    

  _static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Quarry: a Minecraft protocol library
        


        		
          Networking
          
            		
              Writing a Client
              
                		
                  Skeleton Client
                


                		
                  Offline Profiles
                


                		
                  Online Profiles
                


              


            


            		
              Writing a Server
              
                		
                  Skeleton Server
                


              


            


            		
              Writing a Proxy
              
                		
                  Skeleton Proxy
                


                		
                  Downstream Factories
                


                		
                  Bridges
                


              


            


            		
              Factories and Protocols
              
                		
                  Factories
                


                		
                  Protocols
                


              


            


            		
              Packet Names
              
                		
                  Minecraft 1.15.2
                


              


            


          


        


        		
          Data Types
          
            		
              Buffers
              
                		
                  Protocol Versions
                


              


            


            		
              Registry
            


            		
              Chat Messages
            


            		
              Blocks and Chunks
              
                		
                  Packets
                


                		
                  Regions
                


              


            


            		
              NBT
              
                		
                  Tags
                


                		
                  Files
                


                		
                  Debugging
                


              


            


            		
              UUIDs
            


          


        


        		
          Examples
          
            		
              Clients
              
                		
                  Pinger
                


                		
                  Player Lister
                


                		
                  Chat Logger
                


                		
                  Messenger
                


              


            


            		
              Servers
              
                		
                  Downtime Server
                


                		
                  Auth Server
                


                		
                  Chat Room Server
                


              


            


            		
              Proxies
              
                		
                  Chat Hider Proxy
                


              


            


          


        


        		
          Changelog
          
            		
              master
            


            		
              v1.5.1
            


            		
              v1.5
            


            		
              v1.4
            


            		
              v1.3
            


            		
              v1.2
            


            		
              v1.1.1
            


            		
              v1.1
            


            		
              v1.0
            


            		
              v0.9.1
            


            		
              v0.9
            


            		
              v0.8
            


            		
              v0.7
            


            		
              v0.6.3
            


            		
              v0.6.2
            


            		
              v0.6.1
            


            		
              v0.6
            


            		
              v0.5
            


            		
              v0.4
            


            		
              v0.3.1
            


            		
              v0.3
            


            		
              v0.2.3
            


            		
              v0.2.2
            


            		
              v0.2.1
            


            		
              v0.2
            


            		
              v0.1
            


          


        


      


    
  

_static/up.png





